Madras College Maths Department

Higher Maths

Logarithms and Exponentials

Page	Topic	Textbook
0	Why use a logarithm?	-
$1-2$	Growth, decay and a special number, e	Page 4-5 Ex 1A Q 1-7
3	Writing numbers in logarithmic form	Page 6 Ex 1B Q1-3
$4-6$	Laws of logarithms	Page 9-10 Ex 1C Q1-5
7	The natural logarithm	Page 11 Ex 1D Q1-5
8	Solving logarithmic equations	Page 11-15 Ex 1E, F, G All Qs parts a,c,e, etc
$9-10$	Applications of exponential functions and logarithms	Page 16 Ex 1H Q1-5 Page 17 Ex 1I Q 1, 2, 4.
$11-12$	Interpreting experimental data.	Page 21-22 Q 1-3

Logarithms and Exponentials

A logarithm is the inverse function of an exponential. It can be used to solve the following equations.
Q) Solve the following:
a) $10^{x}=100$
b) $10^{x}=50$
c) $7^{x}=300$

Maths 3 Outcome 3
Exponential Growth and Decay
$y=a^{x}$ is called an exponential function to the base a. It is aten used when modelling
populations.

If $a>1$ then $4=a^{x}$ is a growth function

If $0<a<1 \quad y=a^{x}$ is a decay function

Ex
Cells in a pete dish multiply at a rate of 20% per day. Taking C_{0} as the initial population:
a) find a formula for C , the number of cells after n days.
b) how long coil it take for the number \& calls to at least double.

A special Exponential Function
As n gets bigger the value of $\left(1+\frac{1}{n}\right)^{n}$ approaches a limit and this value is denoted by the letter e.
$e=2.718281828 \ldots$ is another well known mathematical constant.
$f(x)=e^{x}$ is called the exponential function, base e, it has the special property that its clenvative is the same as it $\Rightarrow f(x)=f^{\prime}(x)=e^{x}$.

Ex
A van hire company calculates the depreciation in the value of its vans using the formula $V(t)=V_{0} e^{-0.16 t}$ A new van costs $\$ 18000$, calculate its value after 5 years.

Logarithons
Remember that the wiverse of $y=a^{x}$ is called the loganithmic function

$$
y=a^{x} \Leftrightarrow \log _{a} y=x
$$

ExI
Wite in logarithmic form
(a) $3^{4}=81$

$$
\begin{equation*}
\frac{1}{2}=2^{-1} \tag{b}
\end{equation*}
$$

Ex2
Simplify
(a) $\log _{2} 4$
(b) $\log _{4} 64$
(c) $\log _{3} \frac{1}{27}$

Laws of Logarithms
Law 1 $\quad \log _{a} x y=\log _{a} x+\log _{a} y$
Proof
let $\quad \log _{a} x=p$ and $\log _{a y}=q$

$$
\begin{aligned}
\Rightarrow \quad x & =a^{p} \quad y=a^{q} \\
x y & =a^{p} a^{q} \\
x y & =a^{p+q}
\end{aligned}
$$

into log
form
sub back,

$$
\log _{a} x y=p+q
$$

$$
\log _{a} x y=\log _{a} x+\log _{a} y
$$

Law 2 $\underline{\underline{\log _{a} \frac{x}{4}}=\log _{a} x-\log _{a} 4}$
Proof
let $\log _{a} x=p$ and $\log _{a} y=q$

$$
\begin{aligned}
\Rightarrow & x=a^{p} \quad y=a^{q} \\
\frac{x}{4} & =\frac{a^{p}}{a^{q}} \\
\frac{x}{4} & =a^{p-q}
\end{aligned}
$$

\log form $\log _{a} \frac{x}{4}=p-q$
Sob back

$$
\log _{a} \frac{x}{4}=\log _{a} x-\log _{a} 4
$$

Law $3 \quad \underline{\underline{\log _{a} x^{n}=n \log _{a} x}}$
Proof let $\log _{a} x=p$

$$
\Rightarrow \quad x=a^{p}
$$

hence $x^{n}=\left(a^{p}\right)^{n}$

$$
x^{n}=a^{n p}
$$

log form $\log _{a} x^{n}=n p$
sub back $\quad \log _{a} x^{n}=n \log _{a} x$
It is also important to remember

$$
\begin{array}{ll}
\log _{a} a=1 & \left(a^{\prime}=a\right) \\
\log _{a} 1=0 & \left(a^{\circ}=1\right)
\end{array}
$$

We use the laws of logs to manipulate algebraic expressions in order to simplify or solve them.

Ex Simplify
(a) $\log _{8} 2+\log _{8} 4$
(b) $3 \log _{3} 3+\frac{1}{2} \log _{3} 9$.
$E \times 2$
If $\log _{a} 4=\log _{a} 2+3 \log _{a} x$, express y in terms of x.

Natural Logarithms
Logarithms to tue base e are called natural logarithms, write $\log _{e} x$ or $\ln x$.
Ex 1
Solve these equations correct to 2 dip.
(a) $4^{x}=25 \quad$ (b) $e^{3 x}=35 \quad$ (c) $\ln x=12$

Logarithmic Equations
Solve the following equations for $x>0$
(a) $\log _{a} 4+\log _{a} x=\log _{a} 12$
(b) $\quad \log _{a}(x+1)+\log _{a}(x-1)=\log _{a} 8$

The number of pairs of breeding gulls in a nature reserve is given by $P(t)=500(1.09) t$, where t is the time in years since records began.
(a) How many pairs were there initially?
(b) After how many years
(b) After how many years will the population
exceed 2000 pars for exceed 2000 pairs for the first time?

A number N_{0} of radioactive nude i decay to N_{t} after t years according to the law $N_{t}=N_{0} e^{-0.05 t}$.
a) Find the number remaining after $50 y$ years if the original number No was 500 .
(b) The half-life of a radioactue sample is defined as the time taken for ere activity to be reduced by half. Calculate the half-life for this sample.

Interpreting Experimental Data

2 sets of data are often linked by exponential growth or decay. Logarithms can be applied to determine the equation of the function.

These functions can be of the form:

- $y=k x^{n}$
- $y=a b^{x}$

1) Results from an experiment are shown in the graph.

(a) Show this graph represents a relationship of the form $y=k x^{n}$
(b) Determine the values of k and n.
2) Results from an experiment are shown in the graph.

(a) Show this graph represents a relationship of the form $y=a b^{x}$
(b) Determine the values of a and b.
